Davey–Stewartson equations in (3 + 1) dimensions with an infinite-dimensional symmetry algebra
نویسندگان
چکیده
منابع مشابه
Generalized Kadomtsev-Petviashvili equation with an infinite dimensional symmetry algebra
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملOn nonlinear partial differential equations with an infinite-dimensional conditional symmetry
The invariance of nonlinear partial differential equations under a certain infinite-dimensional Lie algebra AN (z) in N spatial dimensions is studied. The special case A1(2) was introduced in J. Stat. Phys. 75, 1023 (1994) and contains the Schrödinger Lie algebra sch1 as a Lie subalgebra. It is shown that there is no second-order equation which is invariant under the massless realizations of AN...
متن کاملv 2 1 7 D ec 1 99 3 Infinite dimensional symmetry of corner transfer matrices
We review some of the recent developments in two dimensional statistical mechanics in which corner transfer matrices provide the vital link between the physical system and the representation theory of quantum affine algebras. This opens many new possibilities, because the eigenstates may be described using the properties of q-vertex operators. Infinite dimensional symmetry of corner transfer ma...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Letters in Mathematical Physics
سال: 2020
ISSN: 0377-9017,1573-0530
DOI: 10.1007/s11005-020-01258-0